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The complete three-dimensional interaction between a spherical shock wave and
a submerged #uid-"lled elastic circular cylindrical shell is considered. A hybrid
analytical}numerical solving procedure is established. An exact analytical solution in the
form of double Fourier series with time-depending coe$cients is obtained for
the hydrodynamic pressure. Displacements of a shell are approached analytically to reduce
the problem to a set of systems of ordinary di!erential equations, which are treated
numerically. Detailed analysis of the interaction is performed with emphasis given to the
stress}strain state. A few important features of the interaction process have been found. In
particular, it has been shown that the interior #uid not only substantially a!ects the
magnitude of displacements and stresses, but also dramatically changes the nature of the
interaction. It has been found that the absolute maximum of stresses can neither be caused
by a direct action of a shock wave nor by a constructive superpose of elastic waves in the
shell, but by the pressure wave propagating in the interior #uid. This fact seems to be of
essential importance for engineering applications, especially when safety is a primary design
concern. Another important result is that the maximum stresses are attained at large times,
which makes use of early time asymptotics leading to incorrect results. The proposed
semi-analytical approach seems to be computationally attractive and suitable for extensive
numerical simulations.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The interaction of hydrodynamic loads with circular cylindrical structures has been of
substantial interest over the last few decades. Two main groups of problems have been
addressed: low-frequency loading, with the ocean waves as the best studied case, and
high-frequency loading, where shock waves, earthquake excitations, and acoustic pulses are
of primary interest. In the present paper, the second class of the problems is addressed, and
the most complex &three-media' case of the contact (exterior #uid}shell}interior #uid) is
investigated.

Referring to the existing literature, the interaction of a plane shock wave and a circular
cylindrical shell was "rst approached by Mindlin and Bleich [1]. Their solution involved
a few signi"cant simpli"cations, and was only valid for the beginning of the process.
Haywood [2] considered interaction with the same plane shock wave but introduced
another solution, which allowed to address larger times. However, it still involved some
&early time' simpli"cations. A complete exact solution for this two-dimensional problem
was obtained by several authors. Here we will mention works of Geers [3], Huang [4],
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Mnev and Pertsev [5], and Pertsev and Platonov [6]. All the authors used the same
approach based on the Laplace}Fourier transform technique, and obtained an analytical
solution in the form of Fourier series with time-dependent coe$cients.

The interaction of a completely submerged circular cylindrical shell with
three-dimensional loads, such as the spherical shock waves, is the most &&geometrically''
complex case, and it was "rst addressed in early 1970s. Huang and Wang [7] presented
a solution using the Laplace}Fourier transform technique, and applied a numerical
procedure to calculate the inverse transforms. Pertsev and Platonov [6] discussed
di!raction and radiation problems in some details using the same technique to obtain
expressions for transforms, and an analytical procedure to perform the inverse transform.

The problem of loading on a shell "lled with an acoustic media was addressed "rst by
Peralta and Reynor [8]. They considered a #uid-"lled shell submersed in an acoustic media
and subjected to a plane step pressure pulse, and made use of the Fourier}Laplace
transform to "nd a solution which was only valid for the early stage of the process. Tang [9]
studied the dynamic response of a #uid-"lled shell to a load moving in the axial direction
with a constant speed. He used simpli"ed equations of the axisymmetric motion of
a thin-walled shell (Timoshenko's equations of beam vibrations), therefore the performed
analysis was one-dimensional. King and Frederick [10] considered elastic waves
propagating in a #uid-"lled cylindrical shell. Again, the problem was treated as axially
symmetric, and only an early-time stage was addressed. It seems that the most advanced
study of the problem was performed by Carpenter and Berger [11]. They investigated
loading on a semi-in"nite #uid-"lled shell governed by the Love}Timoshenko shell
equations, and containing a #uid satisfying the three-dimensional wave equation. The
authors used the Hankel}Fourier}Laplace transform to obtain a solution in an analytical
form, and then applied a numerical inversion procedure to "nd the displacements. Only
a simple axisymmetric periodic load was considered, and stresses were not addressed at all.

Thus, to the best of the author's knowledge, it seems that the problem of the complete
interaction between an essentially three-dimensional load such as a spherical shock wave,
and an elastic circular cylindrical shell both "lled with #uid and submerged in another one,
has not been addressed yet. Also, most of the above-mentioned works gave solutions in the
form of multiple integral transforms which appears to be not very useful for analysis based
on those solutions. Hence, it is very desirable to obtain inverse transforms in an analytical
form to make the results more practically applicable.

In this paper, we are using a semi-analytical approach based on separation of variables
(space co-ordinates), the Laplace transform (time), and numerical treatment of the reduced
system for shell displacements ("nite di!erence approach). The proposed methodology
di!ers from most of the previously published works in a way the Laplace transform is
applied. Here the transform is used to obtain an analytical solution for a &hydrodynamic'
part of the problem, and pressure is obtained in the form of double Fourier series with
time-dependent coe$cients. Numerical treatment of the &elastic' part is performed in the
time domain. Other researchers preferred to obtain displacements in the form of integral
transforms, and then applied numerical inversion at the very end. Their approach may seem
to be more straightforward, and the question arises: does the proposed method have any
advantageous over the previously published works? The author believes that it does.

In the proposed method, the numerical inverse of the Laplace transform is applied only
once to calculate the response functions. The total pressure is expressed in terms of these
functions in the integral form. The response functions are uniform for all the problems of the
same geometry, and do not depend on the parameters of the system. Thus, the most
sophisticated (and time-consuming) &inversion' part is localized in calculating the response
functions, and the rest of the solution is just a technical issue involving numerical
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integration and one-dimensional "nite di!erence approximation. At this point, it is very
easy to change the system's parameters and perform calculations for a large number of
di!erent systems. For example, varying the thickness of a shell and/or density of the #uids
would a!ect only the "nal part of the solving procedure, and it would only take an
insigni"cant fraction of total computational time. In contrast, if one uses the alternative
method (inverse transformation at the end), even a change of one parameter would cause the
necessity to calculate many inverse transforms all over again. In this case, computational
e!orts can become unreasonable when the analysis of large number of di!erent systems is
a goal. All the above-mentioned makes the author believe that the proposed method is
suitable for extensive numerical simulations and is more computationally attractive than
the one in common use.

We should note here that, following the common trend in engineering mathematics,
numerical methods have been gaining more popularity. Innumerous numerical codes have
been produced, from relatively simple ones aimed at analyzing a particular problem, to
universal supercomputer-oriented industrial codes. Some researchers have been focused on
the study of the shock waves propagation and di!raction over a rigid "xed cylindrical
structure (e.g., references [12, 13]), while others have been addressing a &hydroelastical'
aspect of #uid}shell interaction, developing e$cient solvers for coupled equations of a shell
and #uid(s).

There is no need of emphasizing the importance of numerical analysis of structures. The
present paper is not an attempt to compete with numerical codes in any way, but just
another approach to the complex multi-media problem of hydroelasticity. The obtained
solution is &exact', and hence it may be successfully used for validation of numerical codes.
Even in this capacity, an analytical treatment of the problem deserves attention. Besides, for
a wide variety of loads (especially for not very intensive ones) the proposed solution will give
results which are very close to the real values of physical quantities.

2. MATHEMATICAL FORMULATION

We are considering a thin elastic circular cylindrical shell submerged in and "lled with
homogeneous, inviscid, linearly compressible #uid. The radius of the shell is A, and the
thickness is H

�
. The shell is subjected to a spherical shock wave. Let (X, �, R) be a

cylindrical co-ordinates system based on the axis of the shell, and let (0, 0,D) be co-ordinates
of the source of the shock wave. The geometry of the problem is shown in Figure 1.

The #uids are governed by the wave equation for the #uid potential � which is
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Figure 1. Geometry of the problem.
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We assume the shell to be thin which means that its thickness is much smaller than the
radius. Also, we take into account both the stretching (expanding) energy and the bending
one. In this case, we can use Love's expression for the strain energy per unit area of the
shell [14]:
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along with the known expression for the kinetic energy per unit area,
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to derive equations of shell dynamics using Hamilton's principle. Here,
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where ;, <, and = are the X, �, and R components of the displacement of the middle
surface of the shell, �

�
is density of the shell material, E is Young's modulus of the shell

material, � is the Poisson ratio of the shell material, and K�"H�
�
/12. Note that, unlike in

Love's work, we consider an inward normal for the &elastic' part of the problem and an
outward one for the &hydrodynamic' part (&!' instead of &#' in the expression for �

�
).
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The boundary conditions on the contract surface are
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the condition at the axis of the shell is
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and at the in"nity we have
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Because of the in"nite length of the shell, the boundary conditions with respect to X can
be formulated as
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where X
�
is large enough for the time interval we are interested to address. The potential

and the displacements are to be periodical with respect to �. All the initial conditions are
zero.

Let us now introduce the following dimensionless quantities (the system A, C
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where C
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is the sound speed in the shell material de"ned as C
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"�E/ (�
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If we decompose the potential in the exterior #uid as
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is a known incident potential, �
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components of the potential. �
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boundary condition at the shell surface

��
�

�r �
	��

"!

��
�

�r �
	��

, (20)

and the zero boundary condition at in"nity.
The radiated potential �

	
is to satisfy the same equation as �
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, the same zero condition at

in"nity, and the boundary condition at the shell surface in the form
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Finally, the potential in the interior #uid must satisfy the equation
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and must be bounded at the axis of the shell
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Equations for the displacements will be derived later on.
Before we turn to the solution, let us brie#y address the spherical shock waves. It can be

shown (e.g., reference [15]) that the potential of a shock wave with exponentially decaying
pressure behind its front has the form
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where � is a parameter of exponential decay, 
 is a normalizing parameter to provide
realistic magnitudes of the pressure in the front of the shock wave,

d
�
"�d�#x�#1!2d cos � is the distance between the source of the shock wave and

the point (x, �) at the surface of the shell, and
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(26)

Note that in this formulation, we consider the moment of contact between the shock wave
and the shell as initial.

The parameters 
 and � depend on the distance d, explosive material, and some other
factors. Exact values can be adopted from the theory of underwater shock waves [15] for
each particular case. For example, if we address a typical underwater explosion, for d"1)2
we will have �"0)121 and 
"0)0203, whereas for d"5)0, we will arrive at �"0)184 and

"0)00403.

3. HYDRODYNAMIC PRESSURE

In this section, we will derive analytical expressions for the total hydrodynamic pressure
acting at the shell surface. If we assign that pressure p

�
corresponds to the potential �

�
, p

�
to
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Let us apply the Laplace transform with respect to time to equation (19) written in
cylindrical co-ordinates,
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Here, ¸ denotes the Laplace transform of a function and s the parameter of the transform.
Separation of variables with respect to the space co-ordinates gives the general solution

of equation (28) as
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Now, taking into account the connection (3) between pressure and potential, the
di!raction pressure at the shell surface may be obtained in the form

p
�
�
	��

"!

�
�

���

�
�
���
�b��

(t)#�



�

b
��

(	)�Q
��

(t!	)d	� cos(mN x) cos(n�). (33)

Here dot denotes the di!erentiation, and �
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(t) are the response functions of the &exterior'
part of the problem with the Laplace transforms given by
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where the prime denotes the "rst derivative. As one can see now, the di!raction pressure is
known as soon as the response functions are calculated.

If we decompose the normal displacement w as
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and take into account the boundary conditions (21) and (23), both radiation pressure and
the pressure in the interior #uid can be easily derived:
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Here, �
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are the response functions of the &interior' part of the problem. The Laplace
transforms of �
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are given by
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where I
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(s) is the modi"ed Bessel function of the "rst kind of order n. Again, the problem is

reduced to calculation of the response functions.
Finally, if we decompose the incident pressure at the shell surface in a Fourier series
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the total hydrodynamic pressure (27) will take the form
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4. RESPONSE FUNCTIONS

It is easy to show that the response functions �
��

and �
��

can be expressed as

�
��

(t)"�
�
(t)!mN �




�

�
�
(�t�!	�) J

�
(mN 	) d	, (43)

�
��

(t)"�
�
(t)!mN �




�

�
�
(�t�!	�) J

�
(mN 	) d	, (44)

where J
�
is the Bessel function of the "rst order, and �

�
and �

�
are the response functions of

the corresponding two-dimensional problems with the Laplace transforms de"ned by

�

�
(s)"!

K
�
(s)

sK�
�
(s)

and �

�
(s)"

I
�
(s)

sI�
�
(s)

. (45)



Figure 2. Functions �
�
(t) for various n: **, �

�
(t); } } }, �

�
(t); } ) }, �

�
(t); - - - -, �

��
(t).

SHOCK WAVE ON CYLINDRICAL SHELL 623
The functions �
�
have been calculated using a numerical method based on the reduction

of Mellin's integral for �
�
to a Fourier cosine integral. All the details can be found in

reference [16]. Here we will just mention the basic properties of the functions �
�
:

�
�
�

��

"1,
��

�
�t �


��

"!

1

2
, lim


��
�
�
(t)"0, �

�

�

�
�
(t) dt"

1

n
. (46)

Figure 2 shows �
�
for various n.

Analytical expressions have been obtained for the functions �
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(see reference [17] for

details):
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It is also worth noticing that
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especially clear for �
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5. DISPLACEMENTS AND STRESSES

If we expand the displacements as
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where the sine and cosine factors are omitted.



Figure 4. Functions �
�
(t) and �

�
(t): **, �

�
(t); } } } , �

�
(t).

SHOCK WAVE ON CYLINDRICAL SHELL 625
Now, if we rewrite the expressions for the strain and kinetic energies (4) and (5) in terms of
u
��

, v
��

, and w
��

, perform integration over the shell surface, apply Hamilton's principle, and
then incorporate the pressure term p

��
given by equation (42), the following

integral}di!erential system can be obtained for every combination of m and n

��uK
��

#c��
��
u
��

#c��
��
v
��

#c��
��
w
��

"0,

��vK
��

#c��
��
u
��

#c��
��
v
��

#c��
��
w

��
"0, (57)
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��
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c��
��
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1#�
2

mN n, c��
��

"

1!�
2

mN �#n�#k� (n�#2(1!�)mN �), (58)

c��
��

"c��
��

"!n#k� (n�#(2!�)nmN �), c��
��

"1#k� (mN �#n�)�,

�"c��
�

, �"(��
�
c�
�
h
�
)��, and the initial conditions are zero.

System (57) has been treated numerically using the "nite di!erence approximation. Series
(52)}(54) show reasonably good convergence. However, one should note that the number of
terms that must be taken into account with respect tom is at least four times larger than that
with respect to n.

The dimensionless stresses in the middle surface of the shell are

�
��

"

EM
1!�� �

�u
�x

#�
�v
��

!�w�, (59)
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�
��
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EM
1!�� �

�v
��

!w#�
�u
�x�, (60)

�
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��
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EM
2(1#�) �

�v
�x

#

�u
���, (61)

where �
��

is a longitudinal (axial) stress, �
��

is a transverse (azimuthal) stress, and �
��

is
a shear stress. Using equations (52)}(54), it is easy to express the stresses in terms of double
Fourier series. Note that a dimensionless stress � is connected with a dimensional one � by
the relation �"�/(�

�
c�
�
).

6. RESULTS AND DISCUSSION

In this section, we will consider a steel shell "lled with oil and submersed in water
(dimensionless parameters of the system are as follows: density of the exterior #uid, sound
speed in th shell material, and radius of the shell are equal to 1)00, ��

�
"7)80, c

�
"3)57,

��
�
"0)90, c

�
"0)96, h

�
"0)01, EM "99)4, and �"0)30). We will analyze the in#uence of two

di!erent shock waves: one with a source located in the close proximity of the shell (d"1)2),
and another with a distant source (d"5)0).

6.1. DISPLACEMENTS

The performed analysis shows that the longitudinal displacement u is much smaller than
the normal w and the transverse v ones. The displacement v is of the same order as w;
however, we will only address w as the most practically interesting parameter. Figures 5 and 6
Figure 5. Normal displacement w versus t for d"1)2:**, front point (x"0, �"0); } } }, rear point (x"0,
�"�).



Figure 6. Normal displacement w versus t for d"5: **, front point (x"0, �"0); } } } , rear point (x"0,
�"�).

Figure 7. Dynamics of the normal displacement w in the middle cross-section for d"1)2.
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showw versus t at the front point x"0, �"0 and at the rear point x"0, �"�. We can see
that the maximum de#ection in the case of d"5 is about 12% of h

�
, and is of order h

�
when

d"1)2. Thus, the present linear theory can certainly be used for shock waves with a distant
source (d'2), and one should be careful dealing with shock waves with a close location of
the source (d(1)5). Also, it is clear that for d"1)2, de#ections are localized in the close
proximity of the front point, in contrast with the case d"5 when the entire cross-section of
the shell experiences considerable deformations. The irregular wave nature of w at t'3 for
d"5 is caused by the wave phenomena in the interior #uid, and this issue will be addressed
later. Note also that, for the rear point, w is exactly zero during the initial stage of the
process (until elastic waves come to the point). This fact is in excellent agreement with
a theoretically expected velocity of elastic waves, and validates the correctness of the
obtained results.

Figures 7 and 8 show the dynamics of w in the middle cross-section x"0. All the
above-noticed e!ects can be observed more clearly from these "gures. Note that the scale of
the displacement in the "gures does not correspond to the real values and is only aimed to
demonstrate the dynamics of the process. The maximum de#ection shown in the "gures is
set to be 20% of the shell radius. The shock wave is propagating from the right to the left. It



Figure 8. Dynamics of the normal displacement w in the middle cross-section for d"5.
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is clear now that for a shock wave with a distant source (d'3) the &elastic beam'
approximation can be more or less successfully used to describe the process. However, for
localized loads (d(2) this approximation leads to incorrect results, because only the close
proximity of the front point experiences considerable deformation, and no &beam-like'
behavior is observed at all.

6.2. STRESSES

It has been found that the dominant role in forming the stress state belongs to the
transverse stress �

��
, and this quantity will be addressed in some details. However, the

contributions of the shear and axial stresses are also substantial, and those should certainly
be taken into consideration. For example, Figure 9 shows the comparison of the
longitudinal, transverse, and shear stresses at di!erent points for d"5. One can see that
both the longitudinal and shear stresses have considerable magnitude.

Figures 10 and 11 show the dynamics of the transverse stress in the middle cross-section.
The compressing stress is shown as &exterior' and stretching as &interior'. The shock wave is
propagating from the right to the left. The wave e!ects are especially clear for d"5, so let us
now discuss this case. As we can see, during the initial stage of the process the elastic waves
are propagating around the shell, and have a constructive superpose at the rear point at
t+1. Then, the superposed waves are running back in the direction of the front point,
where they again superpose constructively at t+1)85. Meanwhile, at t close to 2 the
pressure wave in the interior #uid reaches the rear point, and it a!ects the stress state
dramatically, leading to a large &&stretching'' peak of the stress at t+2)2. It causes elastic
waves that start to propagate in the direction of the front point, and destructively superpose
with the elastic waves propagating in the direction of the rear point. This causes, in turn,
a transient state when the stresses are insigni"cant. This transient state exists for a relatively
long time (t+2)5}4), until the pressure wave in the interior #uid comes to the front point at
t+4, and causes the &compressive' peak of the stress at t+4)45. Then, again, a transient
state with insigni"cant stresses is observed. Note that the last peak of stresses has higher
magnitude than the two previous, in spite of the fact that t is large. This clearly shows that
early time approximations cannot be used in this case.

One should especially note that the pressure in the shock wave is negligibly small when
the transverse stress attains its maximum. Thus, for this case, the maximum stress is driven
by the wave phenomena in the interior #uid rather than a direct action of a shock wave.
This reiterates the necessity of consideration of all the wave e!ects both in the shell and the
#uids.



Figure 9. Comparison of the transverse, longitudinal, and shear stresses for the case d"5; **, longitudinal
stress at the point x"0, �"�; } } }, transverse stress at the point x"0, �"�; } )}, shear stress at the point
x"1)6, �"0)6�.

Figure 10. Dynamics of the transverse stress in the middle cross-section for d"1)2.
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6.3. COMPARISON WITH THE HOLLOW SUBMERGED SHELL

Now we will focus on the di!erence between a hollow submerged shell and the present
case in terms of stress state. The in#uence that the interior #uid has on the process is the
main issue to be discussed here.

Figures 12 and 13 show the transverse stress �
��

versus t at the front and rear points for
the same (steel) shell submerged in water, the same shock wave with a source located at the
distance d"5, but two di!erent cases of contact with an interior #uid (a shell "lled with oil
and a hallow one). During the initial stage of the process, the behavior of the stresses is the
same, and the stress magnitude is much lower for the shell occupied by #uid. However, the
stresses become totally di!erent when the wave e!ects in the interior #uid start to a!ect
the process.

For the front point, this occurs at t+3, when the elastic waves initiated at the rear point
at t+2}2)2 come to the front point at t+2)9}3)1. This causes the "rst peak of the stress
that does not take place for the hollow shell. Then, after a transient state when the stresses
are approximately the same for both cases, the wave in the interior #uid, scattered from the
domain close to the rear point, comes back to the front point. It causes the second peak at
t+4)5. For the rear point, the stresses start to di!er signi"cantly at t+2)2 when the



Figure 11. Dynamics of the transverse stress in the middle cross-section for d"5.
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pressure wave in the interior #uid comes to that point. Then the stresses become
approximately the same for the rest of the process.

Thus, one can see that the case of a shell "lled with #uid essentially di!ers from that of
a hollow submerged shell.

7. CONCLUSIONS

In the present paper, the problem of the complete three-dimensional interaction between
a spherical shock wave and a #uid-"lled submerged circular cylindrical shell is solved



Figure 12. Comparison of the transverse stresses at the front point for d"5: **, both interior and exterior
#uids; } } } , exterior #uid only.

Figure 13. Comparison of the transverse stresses at the rear point for d"5: **, both interior and exterior
#uids; } } } , exterior #uid only.
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semi-analytically, and the detail analysis of the stress}strain state of the shell is performed. It
has been found that the stress}strain state of the shell has the following features.

(1) The presence of the interior #uid dramatically changes the stress}strain state of the
shell. The stress magnitude may attain a maximum not only because of the direct action of
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the shock wave or superposition of elastic waves, but also because of wave e!ects in the
interior #uid. It should be noted especially that when the stress maximum is caused by the
direct action of a shock wave or the elastic wave superposition, it occurs at t(1)5, whereas
when it is caused by the wave phenomena in the interior #uid, it occurs at larger times
(about 2)2 for the rear point and 4)45 for the front one in the case of a steel shell containing
oil and submerged in water). In fact, it seems that for the case of contact with two #uids, it is
impossible to precisely predict times when stress magnitude is maximal: it depends on the
distance between a shock wave source and the shell, and properties of the involved #uids
and shell material. However, it seems that the noticeable in#uence of wave e!ects in the
interior #uid is much more possible for a shock wave with a distant source. It is also clear
now that one should be very careful with the use of early time asymptotics, especially for
shock waves with d'2.

(2) The main contribution to the stress state is provided by the transverse stress �
��
;

however, the longitudinal and shear stresses �
��

and �
��

have a considerable magnitude as
well.

(3) For a shock wave with a source located in the proximity of the shell (d(2) the
stress}stain state has a &local' nature, and there are no e!ects for the shell as a whole. For
shock waves with a distant source (d'4), a substantial domain of the shell is involved in the
deformation process, and, as a very rough approximation, one can consider the shell as an
elastic beam.

(4) The stress}strain state of the shell has a very complex wave nature, and such wave
phenomena as elastic wave interference substantially a!ect the process, especially stresses.
Thus, a very careful analysis has to be performed to ensure taking into consideration all the
wave e!ects.
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